SS EXPANSION VALVE TRONIC DRAIN 5-YEAR WTHERMANTY GTX Series 5-YEAR Thermal Xchange Cycling **Refrigeration Dryers**

35-39°F PRESSURE

. 2

0

any trates an

💾 🗮 🗰 👯

-

ELECTRONI

EWPO

ALVE

RAIN

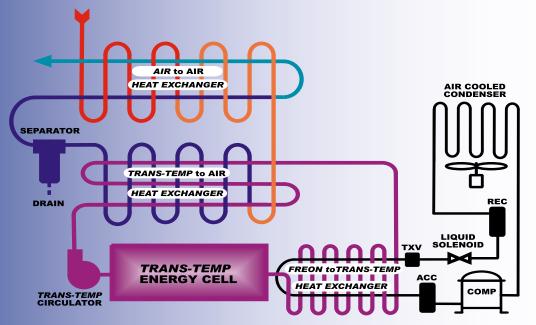
OINT

YEAR WARRANT

-

GREAT LAKES AIR

Why Dry Compressed Air?


Compressed air is a clean, convenient and versatile energy source ideal for many commercial, or industrial applications. Air compressors draw in ambient air where the gas volume is reduced to increase pressure and store energy. Any solids, vapors or aerosols drawn into the compressor is concentrated in direct proportion to the ratio of compression. This process produces saturated compressed air with particulate contaminants and excess liquid at the compressor discharge. Filtration can remove the liquids and solid contamination but the moisture in a gaseous state (humidity) needs to be removed with a compressed air dryer. The dryer chills the compressed air condensing the humidity into a liquid. This enables a separation device to remove it from the system. Removing the moisture from a compressed air system optimizes reliability, efficiency, and productivity by avoiding costly equipment failure, product contamination, and distribution system breakdown.

How A Cycling Dryer Works

Rising energy costs have forced equipment efficiency and operating costs to become a significant factor in the purchase of new equipment. A basic non-cycling refrigerated dryer is specified by matching the capacity of the dryer, with the maximum capacity requirement of the compressed air system. This design is very efficient when the loads are balanced. Unfortunately in many applications, compressed air systems experience wide fluctuations that range from 0 to 100% of full load. If the compressed air load falls, the refrigeration system of a non cycling dryer must dump or waste energy to balance the system. The GTX cycling refrigerated air dryer uses a fully loaded refrigeration system to store energy in the TRANS-TEMP energy cell during low load periods. By operating the refrigeration system fully loaded, you maximize the operating efficiency, reducing energy costs. When the ENERGY CELL reaches maximum charge, the refrigeration compressor CYCLES OFF, allowing the energy cell to continue providing the required energy for cooling and drying the compressed air system.

Sequence of Operation

Saturated compressed air enters the dryer and is initially cooled in the *Air to Air* heat exchanger by the cold outgoing air. The TRANS-TEMP Fluid from the energy storage cell further cools the compressed air in the *Trans-Temp to Air* heat exchanger. Liquid that has been condensed by the reduced air temperature is removed in the high efficiency separator. The cold air is then reheated as it pre-cools the inlet air via the *Air to Air* heat exchanger. The refrigeration system maintains the temperature in the energy cell with a microprocessor based controller and operates only as required. The energy cell is capable of maintaining dewpoint, allowing the refrigeration compressor to be cycled off, reducing the required energy of operation.

The **Trans-Temp Energy Cell**[™] integrates a proprietary blend of non-hazardous, completely biodegradable fluids that attains an ideal balance of thermal storage and thermal conductivity. The energy cell is encased in a heavy duty non ferrous vessel that is insulated to maintain energy efficiency.

Energy Savings Calculation

Compressed air volume, temperature, & pressure along with ambient temperature are variable conditions that affect the energy load on a refrigeration dryer. The two most significant variables are inlet volume and temperature. Use the following sample calculation to determine annual energy savings of a GTX cycling dryer.

Sample Calculation for GTX-500 Step #1

Determine an average compressed air consumption

Shift	SCFM	Min	Hours of operation	System Volume FT ³
1st	500	60	40	1,200,000
2nd	475	60	40	1,200,000
3rd	275	60	35	577,500
Weekend	150	60	16	144,000
Actual volu	3,121,500			

Determine the total possible load for the compressed air dryer by multiplying the rated capacity of:

500 x 10,080 = 5,745,600 (GTX-500) x (60 min x 168 Hrs a week) = 5,745,600

Divide actual volume consumption by

Total possible load consumption

3,121,500 / 5,745,600 = 0.54 or 54% Actual Load

Sample Calculation for GTX-500 Step #2

Temperature correction has a high variance due to multiple factors like region, season, and time of day. Select an average dryer inlet temperature taking into account cool evening temperatures. If an annual average is to general to get an accurate result. Average temperature by seasons and break the cost savings calculation into individual seasons.

Temperature		Multiplier	Temperature		Multiplier	
60°F	15.5°C	0.29	85°F	29.4°C	0.64	
70°F	21.1°C	0.40	90°F	32.2°C	0.74	
75°F	23.8°C	0.47	100°F	37.7°C	1.0	
80°F	26.6°C	0.55	110°F	43.3°C	1.32	

Sample Calculation for GTX-500 Step #3

In step #1 the average compressed air consumption calculated to 54% of full load conditions. Assuming a midwest average inlet temperature of 85°F select the multiplier of .64 or 64%. Multiply the average consumption by the temperature correction factor to attain a total percentage of load.

.54 x .64 = .345 or 35%

Select the GTX-500 row and extrapolate 35% from the 30% and 40% columns. \$2,326 + \$2,714 / 2 = \$2,520 Annual savings

Cost Savings at % of full load operating conditions								
Model	80%	70%	60%	50%	40%	30%	20%	
GTX-100A	\$149.64	\$224.45	\$299.27	\$374.09	\$448.91	\$523.72	\$598.54	
GTX-125A	\$180.46	\$270.68	\$360.91	\$451.14	\$541.37	\$631.60	\$721.82	
GTX-180A	\$211.22	\$316.83	\$422.44	\$528.04	\$633.65	\$739.26	\$844.87	
GTX-225A	\$371.42	\$557.14	\$742.85	\$928.56	\$1,114.27	\$1,299.98	\$1,485.70	
GTX-300A	\$400.35	\$600.52	\$800.69	\$1,000.87	\$1,201.04	\$1,401.21	\$1,601.39	
GTX-400A	\$606.33	\$909.50	\$1,212.66	\$1,515.83	\$1,818.99	\$2,122.16	\$2,425.32	
GTX-500A	\$775.53	\$1,163.30	\$1,551.06	\$1,938.83	\$2,326.59	\$2,714.36	\$3,102.12	
GTX-600A	\$862.65	\$1,293.98	\$1,725.31	\$2,156.63	\$2,587.96	\$3,019.29	\$3,450.61	
GTX-800A	\$1,218.26	\$1,827.39	\$2,436.52	\$3,045.66	\$3,654.79	\$4,263.92	\$4,873.05	
GTX-1000A	\$1,587.78	\$2,381.66	\$3,175.55	\$3,969.44	\$4,763.33	\$5,557.22	\$6,351.11	
GTX-1350A	\$1,648.23	\$2,472.35	\$3,296.46	\$4,120.58	\$4,944.69	\$5,768.81	\$6,592.93	
GTX-1800A	\$2,311.62	\$3,467.42	\$4,623.23	\$5,779.04	\$6,934.85	\$8,090.66	\$9,246.47	
GTX-2000A	\$2,542.74	\$3,814.11	\$5,085.47	\$6,356.84	\$7,628.21	\$8,899.58	\$10,170.95	
GTX-2250A	\$2,971.17	\$4,456.76	\$5,942.35	\$7,427.94	\$8,913.52	\$10,399.11	\$11,884.70	

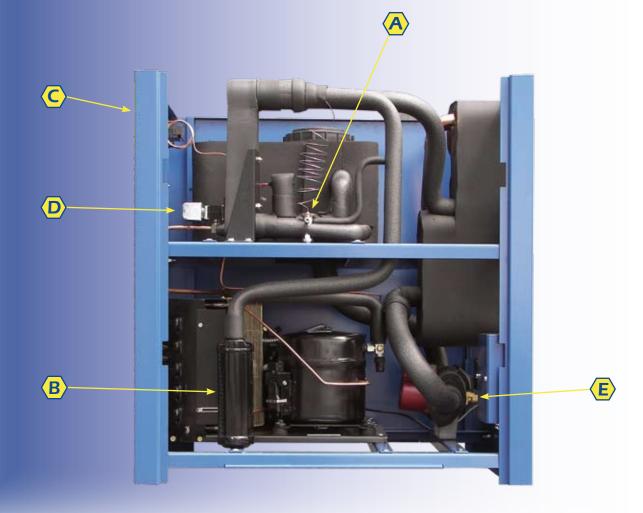
Savings are calculated on a basis of \$0.10 per kw/h

5-Year Product Warranty

The Great Lakes GTX series refrigerated air dryer is manufactured to the highest quality standards. Over 25 years ago in a decision to express this quality standard and distinguish our products from competitors, we standardized on an industry leading *5-Year Product Warranty*. This unique warranty covers the entire dryer for 5-Years and excludes only maintenance items. Many competitive warranties cover only select components, and or prorates a charge for component replacement. With continuous improvement of quality standards, along with engineering improvements that are moving ahead of current technology, you can be assured that Great Lakes Air Products will provide you with a quality product for years of uninterrupted service. For detailed warranty coverage and requirements consult the GTX warranty publication.

Made With Pride in the U.S.A.

Great Lakes Air manufactures all of it's compressed air dryers at one of it's southeast, Michigan facilities. We offer our customers a steady stream of high quality industrial products with a proven history of performance. Replacement and maintenance components are readily available through the Great Lakes distribution system or are also available through several national networks of wholesale refrigeration supply houses.


Purchase the quality and durability of an American made product.

Environmental Refrigerants

Great Lakes Air GTX series utilizes only non ozone depleting Hydro-fluorocarbons or HFC refrigerants approved by the EPA and Montreal protocol.

Models with fractional HP refrigeration compressors utilize R134A refrigerant. The larger systems utilize R404A refrigerant which has no phase out program. Optional refrigerant types are available consult your representative for details.

Design Features & Benefits

Low Pressure Drops

GTX series compressed air dryers are designed for ultra low pressure drops that average 3.7 PSID. Pressure drop can substantially increase the operating cost of your dryer, each pound of pressure drop (PSID) raises the required compressor horsepower by 0.5%. If a facility is required to raise discharge pressure by 3 PSI to overcome component restriction (Pressure Drop), 1.5% additional compressor HP is required.

Adjustable Dewpoint

This feature allows the user to adjust the temperature of the Trans-Temp Energy Cell affecting the dryer dewpoint. Increasing dewpoint in applications that do not require optimum dewpoint suppression will further increase energy

savings. The controller has a bright LED display, alarm text messaging, and a display that will read in °F or °C.

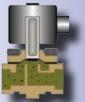
Component Level Reliable Design

SS thermostatic expansion valve with interchangeable SS orifices to matches system design to refrigeration load. This modulates refrigerant flow to match modulating system requirements caused by ambient temperatures and changing compressed air loads. Capillary tube systems used by other manufacturers will increase or decrease refrigerant flow on ambient conditions with no regard to system load. High ambient temperatures or slightly clogged condensers will increase refrigerant flow without a load to balance the system. Operation under these conditions can cause premature compressor failure.

The addition of a suction accumulator further reduces the possibility of refrigerant liquid returning to the compressor causing premature failure. The addition of liquid receivers provide a stable feed to the refrigeration expansion valve. This provides pump down ability and additional refrigeration storage avoiding a critical charge system. Full service refrigeration valves are standard on both the suction and discharge systems.

 $\langle \mathbf{B} \rangle$

 $\langle \mathbf{D} \rangle$


SS panel mounted gauges with brazed connections and coiled vibration eliminators removes the possibility of a refrigerant leak from a common leak point in competitive dryers.

During refrigeration compressor off cycles the liquid line solenoid isolates the high side from the low side of the refrigeration system. This prevents refrigeration liquid from condensing in the TRANS-TEMP energy cell then slugging the compressor with that condensed refrigerant during restart. The the liquid line solenoid adds years of trouble free service to your refrigeration compressor and GTX series dryer.

Great Lakes dryers utilize high quality diaphragm type solenoid valves as drains in addition to an isolation valve and strainer. Diaphragm valves isolate contaminants from the internal piston that would normally foul and restrict it's movement causing failure. Diaphragm valves also have much larger orifices and flow paths that in conjunction with the strainer virtually eliminates the possibility of clogging a condensate drain valve.

Great Lakes Premium Diaphragm Valves

Industry Standard Direct Acting Valves

Inlet	Inlet Temperature °F			90		100			110			120		
Ambier	Ambient Temperature °F		100	110	90	100	110	90	100	110	90	100	110	
	70 psig	1.00	0.92	0.84	0.80	0.73	0.67	0.66	0.60	0.55	0.50	0.45	0.41	
	80 psig	1.12	1.03	0.94	0.90	0.82	0.75	0.73	0.67	0.61	0.55	0.51	0.46	
nre	90 psig	1.24	1.14	1.04	0.99	0.91	0.83	0.81	0.75	0.68	0.61	0.56	0.51	
Pressure	100 psig	1.36	1.25	1.13	1.09	1	0.91	0.89	0.82	0.74	0.67	0.62	0.56	
L Pr	110 psig	1.48	1.36	1.23	1.18	1.08	0.99	0.97	0.89	0.81	0.73	0.67	0.61	
Inlet Air	120 psig	1.60	1.46	1.33	1.28	1.17	1.06	1.04	0.96	0.87	0.79	0.72	0.66	
Inle	130 psig	1.72	1.57	1.43	1.37	1.26	1.14	1.12	1.03	0.94	0.85	0.78	0.71	
	140 psig	1.83	1.68	1.53	1.47	1.35	1.22	1.20	1.10	1.00	0.91	0.83	0.76	
	150 psig	1.95	1.79	1.63	1.56	1.43	1.30	1.28	1.17	1.07	0.97	0.89	0.81	

Non Standard Condition Capacity Correction

To obtain flow capacities at conditions other that standard (SCFM @ 100 PSIG, 100°F Inlet & 100°F Ambient), locate the multiplier at the interception of actual operating conditions. Multiply the rated capacity of the selected dryer by the selected multiplier. The result is the corrected flow capacity of the selected dryer under corrected operating conditions. Flow rates in excess of design due to capacity correction can result in increased pressure drop.

Example: Model GTX-500 operating at 110°F, & 100 PSIG inlet with a 100°F ambient the corrected maximum dryer capacity would be: $500 \times 0.82 = 410$ SCFM if your volume requirements are 475 SCFM the GTX-500 is to small and the next larger unit must be selected.

Features						
	reatures	100/125	180	225/600	800/2250	
L T	Refrigerant Suction Gauge		Stan	dard		
Power & Instrument	Refrigerant Discharge Gauge	Opti	onal	Stan	dard	
Pow	Air Outlet Pressure Gauge	Opti	onal		Standard	
	Illuminated Power On Switch		Stan	dard		
	Compressor Relay/Contactor		Stan	dard		
	Compressor Overload Protection		Stan	dard		
	Compressor High Pressure Shutdown*	Opti	onal	Standard		
	Compressor Low Pressure Shutdown *	Opti	onal	Standard		
ation	Compressor Crankcase Heater	Opti	onal	Standard		
Refrigeration	SS Thermostatic Expansion Valve	Standard				
Refr	Liquid Line Solenoid	Standard				
	Suction Accumulator	Standard				
	Liquid Receiver		Stan	dard		
	Air Cooled Condenser	Standard				
	Water Cooled Condenser	Optional				
	Condensate Strainer with Isolation Valve	Standard				
Drain	Diaphragm Timed Solenoid Drain Valve	Standard				
	Zero Loss Drain Installed		Opti	onal		

Standard and Optional Features

* supplied with automatic reset manual reset is available as an option

Model Number	Capa SC @100 F 35°F	FM	Refrigeration System			Available Voltages		In / Out Ports	Max. Inlet Pressure	Dimensions Inches			Shipping Weight	
	PDP	PDP	HP	Watts	Freon					≥ц	Н	W	D	0,
GTX-100A-♦	100	120	5/8	954	134A	20V	9-0		1"		34	26	33	320
GTX-125A-♦	125	150	3/4	1130	134A	12(208/230-1-60 200-1-50	N/A	1"		34	26	33	350
GTX-180A-♦	180	216	1	1319	134A		3/23		1-1/2"	(7)	46	33	30	500
GTX-225A-♦	225	270	1-1/2	2234	404A		208		1-1/2"	230 PSIG	46	33	30	525
GTX-300A-♦	300	360	2	2399	404A		c	~ 440/480-3-60 ~ 575-3-60	1-1/2"	30 F	46	33	45	750
GTX-400A-♦	400	480	2.8	3574	404A				2"	5	46	33	45	880
GTX-500A-♦	500	600	3	4647	404A				2"		46	33	45	920
GTX-600A-♦	600	720	4	5144	404A	N/A			2"		46	33	45	950
GTX-800A-♦	800	960	5	7199	404A	Ż	A/A		3"		60	35	56	1525
GTX-1000A-♦	1000	1200	7	9339	404A		Ż	3-50 3-50	3"	150 PSIG	60	35	56	1780
GTX-1350A-♦	1350	1620	9	10059	404A			1 1 1	3"		65	42	67	3200
GTX-1800A-♦	1800	2160	10.5	13889	404A			208/230 200	4" Flg		75	57	74	3800
GTX-2000A-♦	2000	2400	12	15208	404A				4" Flg		75	57	74	4050
GTX-2250A-♦	2250	2700	13.5	17654	404A				4" Flg		75	57	74	4375

Specifications & Dimensions

Notes: 1. Capacity reflects 100°F & 100 PSIG inlet conditions and a 100°F ambient.

2. The symbol "
*" represents a missing voltage designation see table for appropriate designation

3. Inlet/Outlet connections are NPT unless otherwise specified

4. Refrigeration watts specified is an average of all power components through a fully loaded operational cycle.

5. For full load amps and recommended max fuse see owners manual.

6. Dimensions are in inches, complete drawings available at www.glair.com

7. Shipping weight is in pounds

8. Dimensions, weights, and specifications are subject to change without notice

Voltage Designation Table								
115/120-1-60	116	208/240-1-60	216	440/480-3-60	436			
100-1-50	115	200-1-50	215	575-3-60	536			
		208/240-3-60	236					
		200-3-50	235					

Dryer Heat Rejection & Cooling Requirements

	Water-Cooled Units:	Air-Cooled Units:
	55.2 BTU/H per SCFM of dryer capacity to cooling fluid	60 BTU/H per rated SCFM of dryer
	4.8 BTU/H per SCFM of dryer capacity to ambient	capacity to ambient
ts	0.0040 GPM per SCFM of dryer capacity @ 50°F Fluid	
d nents	0.0050 GPM per SCFM of dryer capacity @ 60°F Fluid	
⁻ luid irem	0.0065 GPM per SCFM of dryer capacity @ 70°F Fluid	
edn	0.0100 GPM per SCFM of dryer capacity @ 80°F Fluid	
L R	0.0150 GPM per SCFM of dryer capacity @ 90°F Fluid	

Other Products from Great Lakes Air Products

GRF Series Non Cycling Refrigerated Air Dryer

EDR Series High Inlet Temperature Air Dryer

Regenerative Type Desiceant Air Dryers

Compressed Air Filtration

Condensate Drain Systems

Distributed By:

Great Lakes Air Products, Inc. 5861 Commerce Drive Westland, MI 48185-7689 USA Ph: 734-326-7080 • Fx: 734-326-5910 www.glair.com